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Abstract 

Links are closely related to finite connective spaces. In this paper we explore the study of the reciprocal 

relationship between the finite connective spaces and links; we also characterize for the connective order 

of links. Finally, we show that being connective order is a connective property that is invariant under 

catenomorphism. Studying some properties of connective spaces by their corresponding splittability 

spaces is our motivation. 
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1. Introduction                                                                                                                     

The concept of connectivity is very important in the analysis, which led G. Matheron and J. Serra (in 

1988) to propose a special approach to connectivity, but in the past, this topic has not received sufficient 

attention. Recently, Muscat J. and Dugowson S. and others have reinforced the structural composition of 

these spaces, while many of their properties remain unexplored. In this paper we work in the same 

direction, our motivation is to explore and develop concepts specific to connective spaces. In section 2, 

some definitions of links and connective spaces are shown. The third section is  dedicated to the splittability 

structures and the representation of finite connective spaces by links. The last section of the paper is 

devoted to the study of the connective order; also, we prove that any two catenomorphic connective spaces 

have the same connective order.   

                              

2. Preliminaries   

     In this section, we give the basic concepts. All definitions are standard and can be found in [2,8,10] 

        A knot is an embedding of the circle 𝕊1 into three-dimensional Euclidean space ℝ3. A knot 𝒦 is said 

to be tame if and only if it can be represented as a finite closed polygonal chain. It is wild if it is not tame. 

A link is a collection of disjoint knots, each of which is said to be a component of the link. In particular, 

a knot is a link with one component. The tame link is the link in which all components are tame, and wild 
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otherwise. A link is called splittable if the components of the link can be deformed so that they lie on 

different sides of the plane in three-dimensional space. A sublink with one component is called 

nonsplittable. A Brunnian link is a set of 𝑛-linked loops such that each proper sublink is trivial, so that the 

removal of any component leaves a set of trivial unlinked .                                                                                                       

A non-empty set 𝑋 together with a collection 𝒞 of subsets of 𝑋 which satisfies the following axioms:                                                                                                                 

     (i) ∅ ∈ 𝒞  and {𝑥} ∈ 𝒞  , ∀𝑥 ∈ 𝑋 

     (ii) If  {𝐶𝑖: 𝑖 ∈ 𝐼}  is a non-empty collection of subsets in  𝒞 with  ⋂ 𝐶𝑖 ≠ ∅,𝑖∈𝐼   then ⋃ 𝐶𝑖 ∈ 𝒞.𝑖∈𝐼                                                                                                                 

The set 𝑋 is called the support of the space (𝑋, 𝒞) in [4]; the collection 𝒞 is called a c-structure of 𝑋 as in 

[8] or a connectivity structure [2]; elements of a c-structure are called connected sets, and (𝑋, 𝒞) is called 

c-space [8] or integral connectivity space [2]. It is said to be a connective space if 𝒞 satisfies two more 

conditions along with conditions (i) and (ii) as given below:                                                                                                                     

(iii) Given any non-empty sets 𝐴, 𝐵 ∈ 𝒞 with 𝐴 ∪ 𝐵 ∈ 𝒞, then there exists 𝑥 ∈ 𝐴 ∪ 𝐵 such that {𝑥} ∪

𝐴 ∈ 𝒞 and {𝑥} ∪ 𝐴 ∈ 𝒞.    

(iv) If 𝐴, 𝐵,  𝐶𝑖 ∈ 𝒞 are disjoint sets and 𝐴 ∪ 𝐵 ⋃ 𝐶𝑖𝑖∈𝐼 ∈ 𝒞, then there exists 𝐽 ⊆ 𝐼 such that 𝐴 ∪

⋃ 𝐶𝑖𝑖∈𝐽 ∈ 𝒞 and 𝐵 ∪ ⋃ 𝐶𝑖𝑖∈𝐼−𝐽 ∈ 𝒞  

c-structure that satisfies the previous two conditions is called a connective structure or connectology on 

𝑋. A connective space is called finite if the number of its points is finite. The simplest example is the 

discrete connective space where the discrete structure is given by 𝒟 = {∅} ∪ {{𝑥}: 𝑥 ∈ 𝑋}, another one is 

the indiscrete connective space, where the indiscrete connective structure is given by ℐ = 𝒫(𝑋), The 

Brunnian space with n points (𝐵𝑛, 𝔅𝑛) is the space whose support 𝑋 has n points and its structure 𝔅𝑛 =

{𝑋, {𝑥𝑖}; 𝑖 = 1, … , 𝑛}. Let ℬ ⊆ 𝒫(𝑋), then the intersection of all connective structures 𝒞 on 𝑋 containing 

ℬ is a connective structure, and it is called the connective structure generated by ℬ and denoted by ⟦ℬ⟧. 

A function 𝑓: 𝑋 ⟶  𝑌 on connective spaces is called c-continuous if it maps connected sets of 𝑋 to 

connected sets of 𝑌. A catenomorphism is a bijection function 𝑓: 𝑋 ⟶  𝑌 for which 𝑓 and 𝑓−1 are c-

continuous.                                                                                                                            

 

3. Splittability Connective Structures 

     Links are special examples of connective spaces. In [2], for each tame link, a connective space (𝑋ℓ, 𝒞ℓ) 

is defined by taking the components of the link ℓ as points in 𝑋ℓ, and with the nonsplittable sublinks of ℓ 

as connected subsets in 𝒞ℓ , the structure is called the splittability structure of ℓ. As an example,  the 

Borromean rings associate the Borromean connective spaces with three points. More generally, each 

Brunnian space is a connective space.                                                                                                                                                                                                                     
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     The following theorem shows that every finite connective space can be represented by a link, i.e., there 

exists a link whose connective structure is (isomorphic to) the one given. 

Theorem 3.1. Every finite connective structure is the splittability structure of at least one link in ℝ3.                                                                                                                      

The previous theorem is known as the Brunn – Debrunner – Kanenobu Theorem.            

The splittability structure demonstrates the topological structure of the link and its ability to separate into 

disjoint parts; on the other hand, the links illustrate the complexity level of the connective structures and 

give a way to visualize the connections between the components of the space and more clearly show the 

extent of their connectivity with each other.                                                                                                                                                                                                        

The following example illustrates the simplest connective space represented by a link: 

Example 1. The connective space (𝐵3, 𝔅3), which is defined by 𝐵3 = {1,2,3} and 𝔅3 =

{∅, {1}, {2}, {3}, 𝐵3}, can be represented by Borromean link as 

  

Fig 1. Borromean link 

Definition 3.2. The iterated Brunnian space (Brunnian union) is the connective space (𝑋, 𝒞) of a non-

empty family of Brunnian spaces (𝑋𝑖, 𝒞𝑖) , such that  𝑋 = ⨆𝑖 𝑋𝑖 (disjoint union of 𝑋𝑖), and 𝒞 = ⨆𝑖 𝑋𝑖 ∪

{𝑋}.  

Example 2. Let 𝐴5 = {1,2,3,4,5}, and its connective structure is 

 

𝒜5 =  {
{1}, {2}, {3}, {4}, {5},

{1,2}, {1,2,3}, {1,2,3,4} , 𝐴5
} 

The connective space (𝐴5, 𝒜5 ) is represented by the link in Figure 2.  

 

Fig 2. 
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Definition 3.3. [4] any pair (𝐸, 𝑇), we called to be a collar with 𝑛 components, where 𝑇 ⊆ ℝ3 is a solid 

torus and 𝐸 = (𝐸1, … , 𝐸𝑛) defines on the embedding of the link inside 𝑇 such that  

- 𝐸 is not contained in a connected subset of 𝑇, 

- For all 𝑖 ∈ {1, … , 𝑛}, there exists a connected subset of 𝑇 which contains (𝐸𝑗)
𝑗≠𝑖

. 

Example 3. Any completely separable link is represented by a collar; in particular, a link that consists of 

two non-linking circles can be represented by a collar. 

Theorem 3.4. [4] The Brunnian union of a finite family of finite connective spaces that are representable 

by collars is itself representable by collars.  

Colloray  3.5. An iterated Brunnian spaces are splittable. 

 

Fig 3. 

 

Example 4. The connective space (𝑋,𝒞) defined by 𝑋 = { 1, 2,3, 4, 5, 6, 7, 8, 9 }, and 

𝒞 = {
∅, {1}, {2}, {3}, {4}, {5}, {6}, {7},

{8}, {9}, {1,2,3}, {4,5,6}, {7,8,9}
}  

We notice that each one of the sets {1,2, 3}, {4, 5, 6}, {7, 8, 9} is represented by Borromean ring, so the 

splittability structure can be represented by iterated Borromean rings (union Borromean of three 

Borromean rings), as in figure 3.                                                 

 

4. Order of Connective Spaces 

Definition 4.1 [2] Let (X, 𝒞) be a connective space. A connected subset 𝑅 of 𝑋 is said to be irreducible if 

𝑅 ∉ ⟦𝒞 ∖ {𝑅}⟧.                                                                                                                                                                                                                 

Example 5. The singletons are irreducible sets in any connective space.                                  

Our next proposition yields an alternate characterization of irreducible sets in connective spaces;                                                                                                             

Proposition.4.2. Let (X, 𝒞) be a finite connective space. A subset 𝑅 of 𝑋 is an irreducible if there are no 

two proper connected subsets 𝐴, 𝐵 of 𝒞, such that 𝑅 = 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵 ≠ ∅.                                                                                                                            
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Proof. Suppose that 𝑅 is not an irreducible connected subset of 𝑋, then 𝑅 ∈ ⟦𝒞 ∖ {𝑅}⟧, so there are two 

connected sets 𝐶1 and 𝐶2 that belong to 𝒞, such that 𝑅 = 𝐶1 ∪ 𝐶2. Now from axiom (iii) of the definition 

of connective space, we have that there exists 𝑥 ∈ 𝑅 such that {𝑥} ∪ 𝐶1 ∈ 𝒞 and {𝑥} ∪ 𝐶1 ∈ 𝒞. Choose 

𝐴 = {𝑥} ∪ 𝐶1 ∈ 𝒞, and 𝐵 = {𝑥} ∪ 𝐶2 ∈ 𝒞, which completes the proof.                                          □                                                                                   

The following proposition shows that the set of all irreducible subsets forms the minimal base for the finite 

connective space.                                                                                                                                 

Proposition 4.3. Let (𝑋, 𝒞) be a finite connective space. Suppose that I(𝑋) is a collection of irreducible 

subsets of 𝑋, then it is the minimal base for 𝒞.                                     

Definition 4.4. [3] Let  𝑅 be an irreducible subset of finite connective space(𝑋, 𝒞).Then  

- The order 𝜔(𝑅)of singleton subset 𝑅 is equal to zero.     

- For a subset with more than one point , 𝜔(𝑅) = 1 + 𝑚𝑎𝑥𝐾∈𝑆(𝑅) 𝜔(𝐾)                     

Such that 𝑆(𝑅) denotes the set of  all irreducible connected subsets that are strictly contained within 𝑅.                                                                                                                            

Example 6. let 𝑋 = {1,2,3,4}, and 𝒞 = 𝒟𝑋 ∪ {{1,2}, {2,3}, {1,2,3}, 𝑋}, then we have 𝜔({1,2}) = 1,

𝜔({2,3}) = 1                                                                                                                                                                           

The connective order of irreducible subsets describes the level of interconnection between them, where 

the order is increasing progressively according to inclusion, starting at zero for the singletons. Higher 

connective order indicates a greater number of overlapping sets, which means higher complexity of the 

structure. The following definition illustrates the order of finite connective space:                         

Definition 4.5. The order 𝜔(𝑋) of a finite connective space (𝑋, 𝒞), is defined as the maximum order of 

its irreducible connected subsets.                                                          

Definition 4.6. The connective order of a tame link ℓ is the order of the associated connective space 

(𝑋ℓ, 𝒞ℓ) of ℓ, i.e. 𝜔(ℓ) = 𝜔(𝑋ℓ).                                                             

Example 7. Borromean space (𝐵3, 𝔅3) of order one, because every irreducible proper subset of it has 

zero order. More generally, each discrete connective space has order one.                                                                                                                                       

Remark. It is noted that for each finite connective space (𝑋, 𝒞), since |𝑋| = 𝑛, we have 𝜔(𝑋) ≤ 𝑛 − 1                                                                                                                       

Definition 4.7. Let (𝑋, 𝒞) be an iterated Brunnian space. The order 𝜔(𝑋) = 𝑟 + 1 if it is the Brunnian 

union of a Brunnian space of order 𝑟 and one or more other Brunnian spaces less than or equal to 𝑟.                                                                                               

Example 8. The link pictured in figure (2) has a connective order equal to 4, while the order of the link 

shown in figure (3) is 2.                                                              
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Analogously to the topological space, we can define a property of a connective space that is invariant 

under catenomorphism as a connective property. The order of connective space is a connective property. 

In the next theorem, we show this.          

Theorem 4.8. Two catenomorphic connective spaces have the same connective order.   

Proof. Let (𝑋, 𝒞𝑋), (𝑌, 𝒞𝑌) be two connective spaces, and 𝑓: 𝑋 ⟶ 𝑌 be catenomorphism from 𝑋 to 𝑌. 

Suppose that 𝜔(𝑋) = 𝑚, 𝜔(𝑌) = 𝑛. For the sake of the contradiction, we assume, without loss of 

generality, that 𝑚 > 𝑛. According to definition (4.5), 𝑋 contains 𝑚 of overlapping irreducible subsets, 

let's denote these sets by 𝑘𝑖 , 𝑖 = 1, … , 𝑚 such that 𝑘1 ⊂ 𝑘2 ⊂ ⋯ ⊂ 𝑘𝑚 . Now consider the images of 

these subsets under 𝑓:  𝑓(𝑘1) = 𝑅1, 𝑓(𝑘2) = 𝑅2, … , 𝑓(𝑘𝑚) = 𝑅𝑚  , since 𝑓 is c-continuous and 

bijective, hence we have that 𝑅1 ⊂ 𝑅2 ⊂ ⋯ ⊂ 𝑅𝑚. Thus  𝜔(𝑌) = 𝑚, contradicting the assumption. 

Therefore 𝜔(𝑋) = 𝜔(𝑌).  □  

In general, the converse of the last theorem is not true.                                                       

Example 9. The connective spaces of example (6) and example (7) both have the order 1, while the two 

spaces are not catenomorphic.                                                           

 

4. Conclusion 

     In this paper, a composition between connective structures and links has been made; finite connective 

spaces with links have been associated. In addition, connective order has been studied, and it is shown 

that it is a connective property.  
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