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Abstract 

Links are closely related to finite connective spaces. In this paper we explore the study of the reciprocal 

relationship between the finite connective spaces and links; we also characterize for the connective order 

of links. Finally, we show that being connective order is a connective property that is invariant under 

catenomorphism. Studying some properties of connective spaces by their corresponding splittability 

spaces is our motivation. 
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1. Introduction                                                       

                                                              
The concept of connectivity is very important 

in the analysis, which led G. Matheron and J. Serra 

(in 1988) to propose a special approach to 

connectivity, but in the past, this topic has not 

received sufficient attention. Recently, Muscat J. 

and Dugowson S. and others have reinforced the 

structural composition of these spaces, while 

many of their properties remain unexplored. In 

this paper we work in the same direction, our 

motivation is to explore and develop concepts 

specific to connective spaces. In section 2, some 

definitions of links and connective spaces are 

shown. The third section is  dedicated to the 

splittability structures and the representation of 

finite connective spaces by links. The last section 

of the paper is devoted to the study of the 

connective order; also, we prove that any two 

catenomorphic connective spaces have the same 

connective order.   

                              

2. Preliminaries   
 

     In this section, we give the basic concepts. All 

definitions are standard and can be found in 

[2,8,10] 

        A knot is an embedding of the circle 𝕊1 into 

three-dimensional Euclidean space ℝ3. A knot 𝒦 

is said to be tame if and only if it can be 

represented as a finite closed polygonal chain. It is 

wild if it is not tame. A link is a collection of 

disjoint knots, each of which is said to be a 

component of the link. In particular, a knot is a link 

with one component. The tame link is the link in 

which all components are tame, and wild 

otherwise. A link is called splittable if the 

components of the link can be deformed so that 

they lie on different sides of the plane in three-

dimensional space. A sublink with one component 

is called nonsplittable. A Brunnian link is a set 

of 𝑛-linked loops such that each proper sublink is 

trivial, so that the removal of any component 

leaves a set of trivial unlinked .                                                                                                       

A non-empty set 𝑋 together with a collection 𝒞 of 

subsets of 𝑋 which satisfies the following axioms:                                                                                                                 

     (i) ∅ ∈ 𝒞  and {𝑥} ∈ 𝒞  , ∀𝑥 ∈ 𝑋 

     (ii) If  {𝐶𝑖: 𝑖 ∈ 𝐼}  is a non-empty collection of 

subsets in  𝒞 with  ⋂ 𝐶𝑖 ≠ ∅,𝑖∈𝐼   then ⋃ 𝐶𝑖 ∈ 𝒞.𝑖∈𝐼                                                                                                                 

The set 𝑋 is called the support of the space (𝑋, 𝒞) 

in [4]; the collection 𝒞 is called a c-structure of 𝑋 

as in [8] or a connectivity structure [2]; elements 

of a c-structure are called connected sets, and 
(𝑋, 𝒞) is called c-space [8] or integral connectivity 

space [2]. It is said to be a connective space if 𝒞 

http://jsras.rcc.edu.ly/
file:///D:/Download/amna.dlensei@gmail.com


 Journal of Sustainable Research in Applied Sciences  
 

  2 

JSRAS 

 
 

satisfies two more conditions along with 

conditions (i) and (ii) as given below:                                                                                                                     

(iii) Given any non-empty sets 𝐴, 𝐵 ∈ 𝒞 with 

𝐴 ∪ 𝐵 ∈ 𝒞, then there exists 𝑥 ∈ 𝐴 ∪ 𝐵         

such that {𝑥} ∪ 𝐴 ∈ 𝒞 and {𝑥} ∪ 𝐴 ∈ 𝒞.    
(iv) If 𝐴, 𝐵,  𝐶𝑖 ∈ 𝒞 are disjoint sets and 𝐴 ∪
𝐵 ⋃ 𝐶𝑖𝑖∈𝐼 ∈ 𝒞, then there exists 𝐽 ⊆ 𝐼   such that 

𝐴 ∪ ⋃ 𝐶𝑖𝑖∈𝐽 ∈ 𝒞 and 𝐵 ∪ ⋃ 𝐶𝑖𝑖∈𝐼−𝐽 ∈ 𝒞  

c-structure that satisfies the previous two 

conditions is called a connective structure or 

connectology on 𝑋. A connective space is called 

finite if the number of its points is finite. The 

simplest example is the discrete connective space 

where the discrete structure is given by 𝒟 = {∅} ∪
{{𝑥}: 𝑥 ∈ 𝑋}, another one is the indiscrete 

connective space, where the indiscrete connective 

structure is given by ℐ = 𝒫(𝑋), The Brunnian 

space with n points (𝐵𝑛, 𝔅𝑛) is the space whose 

support 𝑋 has n points and its structure 𝔅𝑛 =
{𝑋, {𝑥𝑖}; 𝑖 = 1, … , 𝑛}. Let ℬ ⊆ 𝒫(𝑋), then the 

intersection of all connective structures 𝒞 on 

𝑋 containing ℬ is a connective structure, and it is 

called the connective structure generated by ℬ and 

denoted by ⟦ℬ⟧. A function 𝑓: 𝑋 ⟶  𝑌 on 

connective spaces is called c-continuous if it maps 

connected sets of 𝑋 to connected sets of 𝑌. A 

catenomorphism is a bijection function 𝑓: 𝑋 ⟶  𝑌 

for which 𝑓 and 𝑓−1 are c-continuous.                                                                                                                            

 

3. Splittability Connective Structures 
 

     Links are special examples of connective 

spaces. In [2], for each tame link, a connective 

space (𝑋ℓ, 𝒞ℓ) is defined by taking the components 

of the link ℓ as points in 𝑋ℓ, and with the 

nonsplittable sublinks of ℓ as connected subsets in 

𝒞ℓ , the structure is called the splittability structure 

of ℓ. As an example,  the Borromean rings 

associate the Borromean connective spaces with 

three points. More generally, each Brunnian space 

is a connective space.                                                                                                          

                                                                                                                     

     The following theorem shows that every finite 

connective space can be represented by a link, i.e., 

there exists a link whose connective structure is 

(isomorphic to) the one given. 

Theorem 3.1. Every finite connective structure is 

the splittability structure of at least one link in ℝ3.                                                                                                                      

The previous theorem is known as the Brunn – 

Debrunner – Kanenobu Theorem.            

The splittability structure demonstrates the 

topological structure of the link and its ability to 

separate into disjoint parts; on the other hand, the 

links illustrate the complexity level of the 

connective structures and give a way to visualize 

the connections between the components of the 

space and more clearly show the extent of their 

connectivity with each other.                                                                                    

                                                                                                                            

The following example illustrates the simplest 

connective space represented by a link: 

Example 1. The connective space (𝐵3, 𝔅3), which 

is defined by 𝐵3 = {1,2,3} and 𝔅3 =
{∅, {1}, {2}, {3}, 𝐵3}, can be represented by 

Borromean link as 

  
Fig 1. Borromean link 

 

Definition 3.2. The iterated Brunnian space 

(Brunnian union) is the connective space (𝑋, 𝒞) of 

a non-empty family of Brunnian spaces (𝑋𝑖, 𝒞𝑖) , 

such that  𝑋 = ⨆𝑖 𝑋𝑖 (disjoint union of 𝑋𝑖), and 

𝒞 = ⨆𝑖 𝑋𝑖 ∪ {𝑋}.  

 

Example 2. Let 𝐴5 = {1,2,3,4,5}, and its 

connective structure is 
 

𝒜5 =  {
{1}, {2}, {3}, {4}, {5},

{1,2}, {1,2,3}, {1,2,3,4} , 𝐴5
} 

  

The connective space (𝐴5, 𝒜5 ) is represented by 

the link in Figure 2.  

 

 
Fig 2. 
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Definition 3.3. [4] any pair (𝐸, 𝑇), we called to be 

a collar with 𝑛 components, where 𝑇 ⊆ ℝ3 is a 

solid torus and 𝐸 = (𝐸1, … , 𝐸𝑛) defines on the 

embedding of the link inside 𝑇 such that  

- 𝐸 is not contained in a connected subset of 𝑇, 

- For all 𝑖 ∈ {1, … , 𝑛}, there exists a connected 

subset of 𝑇 which contains (𝐸𝑗)
𝑗≠𝑖

. 

 

Example 3. Any completely separable link is 

represented by a collar; in particular, a link that 

consists of two non-linking circles can be 

represented by a collar. 

 

Theorem 3.4. [4] The Brunnian union of a finite 

family of finite connective spaces that are 

representable by collars is itself representable by 

collars.  

 

Colloray  3.5. An iterated Brunnian spaces are 

splittable. 

 

 
Fig 3. 

  

Example 4. The connective space (𝑋,𝒞) defined 

by 𝑋 = { 1, 2,3, 4, 5, 6, 7, 8, 9 }, and 

𝒞 = {
∅, {1}, {2}, {3}, {4}, {5}, {6}, {7},

{8}, {9}, {1,2,3}, {4,5,6}, {7,8,9}
}  

 

We notice that each one of the sets 

{1,2, 3}, {4, 5, 6}, {7, 8, 9} is represented by 

Borromean ring, so the splittability structure can 

be represented by iterated Borromean rings (union 

Borromean of three Borromean rings), as in figure 

3.                                                 

 

 

 

  

4. Order of Connective Spaces 

 

Definition 4.1 [2] Let (X, 𝒞) be a connective 

space. A connected subset 𝑅 of 𝑋 is said to be 

irreducible if 𝑅 ∉ ⟦𝒞 ∖ {𝑅}⟧.                                                                                           
                                                                                                                            

Example 5. The singletons are irreducible sets in 

any connective space.                        

                     

Our next proposition yields an alternate 

characterization of irreducible sets in connective 

spaces;                                                                                                             

Proposition.4.2. Let (X, 𝒞) be a finite connective 

space. A subset 𝑅 of 𝑋 is an irreducible if there are 

no two proper connected subsets 𝐴, 𝐵 of 𝒞, such 

that 𝑅 = 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵 ≠ ∅.                                                                                                                            
 

Proof. Suppose that 𝑅 is not an irreducible 

connected subset of 𝑋, then 𝑅 ∈ ⟦𝒞 ∖ {𝑅}⟧, so 

there are two connected sets 𝐶1 and 𝐶2 that belong 

to 𝒞, such that 𝑅 = 𝐶1 ∪ 𝐶2. Now from axiom (iii) 

of the definition of connective space, we have that 

there exists 𝑥 ∈ 𝑅 such that {𝑥} ∪ 𝐶1 ∈ 𝒞 and 
{𝑥} ∪ 𝐶1 ∈ 𝒞. Choose 𝐴 = {𝑥} ∪ 𝐶1 ∈ 𝒞, and 𝐵 =
{𝑥} ∪ 𝐶2 ∈ 𝒞, which completes the proof.                                          

□                                                                                   

 

The following proposition shows that the set of all 

irreducible subsets forms the minimal base for the 

finite connective space.                                                                       

                                                                   

 Proposition 4.3. Let (𝑋, 𝒞) be a finite 

connective space. Suppose that I(𝑋) is a collection 

of irreducible subsets of 𝑋, then it is the minimal 

base for 𝒞.                             
                      

Definition 4.4. [3] Let  𝑅 be an irreducible subset 

of finite connective space(𝑋, 𝒞).Then  

- The order 𝜔(𝑅)of singleton subset 𝑅 is 

equal to zero.     

- For a subset with more than one point , 

𝜔(𝑅) = 1 + 𝑚𝑎𝑥𝐾∈𝑆(𝑅) 𝜔(𝐾)                     

Such that 𝑆(𝑅) denotes the set of  all irreducible 

connected subsets that are strictly contained 

within 𝑅.                                                                                                               
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Example 6. let 𝑋 = {1,2,3,4}, and 𝒞 = 𝒟𝑋 ∪

{{1,2}, {2,3}, {1,2,3}, 𝑋}, then we have 

𝜔({1,2}) = 1, 𝜔({2,3}) = 1                                                                                               

                                                                                             

The connective order of irreducible subsets 

describes the level of interconnection between 

them, where the order is increasing progressively 

according to inclusion, starting at zero for the 

singletons. Higher connective order indicates a 

greater number of overlapping sets, which means 

higher complexity of the structure.                                 

                     

The following definition illustrates the order of 

finite connective space:                         

Definition 4.5. The order 𝜔(𝑋) of a finite 

connective space (𝑋, 𝒞), is defined as the 

maximum order of its irreducible connected 

subsets.                                                          

  

Definition 4.6. The connective order of a tame 

link ℓ is the order of the associated connective 

space (𝑋ℓ, 𝒞ℓ) of ℓ, i.e. 𝜔(ℓ) = 𝜔(𝑋ℓ).                                                             

 

Example 7. Borromean space (𝐵3, 𝔅3) of order 

one, because every irreducible proper subset of it 

has zero order. More generally, each discrete 

connective space has order one.                                                                                                                                       

 

Remark. It is noted that for each finite connective 

space (𝑋, 𝒞), since |𝑋| = 𝑛, we have 𝜔(𝑋) ≤ 𝑛 −
1                                                                                                                       

 

Definition 4.7. Let (𝑋, 𝒞) be an iterated Brunnian 

space. The order 𝜔(𝑋) = 𝑟 + 1 if it is the 

Brunnian union of a Brunnian space of order 𝑟 and 

one or more other Brunnian spaces less than or 

equal to 𝑟.                                                                                               
   

Example 8. The link pictured in figure (2) has a 

connective order equal to 4, while the order of the 

link shown in figure (3) is 2.                                                              

 

Analogously to the topological space, we can 

define a property of a connective space that is 

invariant under catenomorphism as a connective 

property. The order of connective space is a 

connective property. In the next theorem, we show 

this;                 

Theorem 4.8. Two catenomorphic connective 

spaces have the same connective order.   

Proof. Let (𝑋, 𝒞𝑋), (𝑌, 𝒞𝑌) be two connective 

spaces, and 𝑓: 𝑋 ⟶ 𝑌 be catenomorphism 

from 𝑋 to 𝑌. Suppose that 𝜔(𝑋) = 𝑚, 𝜔(𝑌) = 𝑛.                                                              
For the sake of the contradiction, we assume, 

without loss of generality, that 𝑚 > 𝑛. According 

to definition (4.5), 𝑋 contains 𝑚 of overlapping 

irreducible subsets, let's denote these sets by 

𝑘𝑖  , 𝑖 = 1, … , 𝑚 such that 𝑘1 ⊂ 𝑘2 ⊂ ⋯ ⊂ 𝑘𝑚 . 

Now consider the images of these subsets under 𝑓:  
𝑓(𝑘1) = 𝑅1, 𝑓(𝑘2) = 𝑅2, … , 𝑓(𝑘𝑚) = 𝑅𝑚  , since 

𝑓 is c-continuous and bijective, hence we have that 

𝑅1 ⊂ 𝑅2 ⊂ ⋯ ⊂ 𝑅𝑚. Thus  𝜔(𝑌) = 𝑚, 
contradicting the assumption. Therefore 𝜔(𝑋) =
𝜔(𝑌).                                                                   □   

 

In general, the converse of the last theorem is not 

true.                                                       

Example 9. The connective spaces of example (6) 

and example (7) both have the order 1, while the 

two spaces are not catenomorphic.                                                           

 

4. Conclusion 

     In this paper, a composition between 

connective structures and links has been made; 

finite connective spaces with links have been 

associated. In addition,   connective order has been 

studied, and it is shown that it is a connective 

property.  
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