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Abstract 

This paper investigates the validity of Poincaré inequalities in metric measure spaces that fail to satisfy 

the classical doubling condition. We construct a specific metric space X by taking the open unit disk in 

ℝ² and replacing its boundary with a Koch curve , a well-known fractal. We define a measure μ on X that 

combines the 2D Lebesgue measure on the interior with the s-dimensional Hausdorff measure (where s = 

log(4)/log(3)) on the fractal boundary. We first demonstrate that this measure μ is not a doubling measure 

due to the dimensional mismatch at the interface between the disk and its boundary. Our main result shows 

that μ is, however, a quasi-doubling measure. Building on this, we prove that the space (X, d, μ), where d 

is the Euclidean metric, supports a (1,p)-Poincaré inequality for p ≥ 1. This result provides a concrete 

example of a non-doubling space where a Poincaré inequality holds, thereby extending the applicability 

of geometric analysis tools to a broader class of irregular and non-homogeneous spaces . Moreover , we 

demonstrate how 

these results can be applied to analyze regularity and energy estimates for solutions of classical 

PDEs—such as the Laplace equation—posed on such domains. Our work extends the known 

theory to new settings not previously covered in the literature . 
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1. Introduction 

The Poincaré inequality is a fundamental mathematical tool in analysis, function theory, and partial 

differential equations. Most studies have focused on regular Euclidean spaces; however, many 

mathematical and natural phenomena require models with fractal boundaries and non-standard measures. 

This paper aims to prove that the Poincaré inequality remains valid in metric spaces with fractal boundaries 

when equipped with a quasi-doubling measure. This result enables the analysis of solution regularity and 

energy estimates for differential equations in such complex environments. 

This study builds upon the seminal work of Heinonen and Koskela , who extended Sobolev spaces to 

metric measure spaces, and Shanmugalingam , who developed Newtonian spaces. Keith and Rajala further 

characterized metric spaces supporting Poincaré inequalities. Foundational contributions to nonlinear 
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potential theory on metric spaces were made by Björn and Björn . Our main contribution lies in extending 

these results to spaces with fractal boundaries under relaxed quasi-doubling conditions.  

 

2. Preliminaries   

    In this section, we give the basic concepts . All definitions can be found in [4,7,8,9,10,11,15].    

2.1   Metric Measure Space with Fractal Boundaries   

    Let 2X   be the open unit disc whose boundary X is replaced by a fractal curve (e.g.,Koch curve). 

The measure   on X  is Lebesgue measure in the interior and Hausdorff measure of dimension 1s   

 on the boundary [7]. 

2.2   Quasi-Doubling Condition 

    For some constant 0dC    and a function  ( ) ( ) ( ): 0, 0,r  →  ,  (increasing, ( ) 0r →  as 0r → ) , we   

have for all  , 0x X r   , ( )( ) ( )( ) ( ), 2 ,dB x r C B x r r   +  [11]. 

2.3   Chain Condition  

    For any ,x y X , there exists a sequence of balls  
1

N

i i
B

=
 of radius r such that 

( )
1 1

,
, , ,N i i c

d x y
x B y B B B N C

r
+     , where cC is a constant [8,9]  

2.4   Fractal boundary  

    The boundary X is a fractal (e.g., Koch curve), equipped with Hausdorff measure of dimension 1s 

[7,10] . 

2.5   Lipschitz Functions and Upper Gradients 

    Let :u X →  be Lipschitz function ; A non-negative function  ug  on the space is called an upper 

gradient of u  if for every rectifiable curve  : 0 ,1 X → , the following inequality holds:  

( )( ) ( )( )0 1 uu u g ds


 −    

    This definition generalizes the classical notion of derivative to more general metric spaces where 

traditional derivatives may not exist. The concept of upper gradients forms the foundation for 

Newtonian spaces and the analysis of analytic properties of functions in such spaces [4,8,15].   

3. Main Theorem 
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    Let X subset of 2  be the unit disc with fractal boundary, and let  be Lebesgue measure in the 

interior and Hausdorff measure on the boundary. Then for every Lipschitz function  :u X →   , there 

exist constants  , 0C    , depending on the fractal dimension s and the quasi-doubling function   , such 

that for every ball ( ),B B x r X=  : 

( ) ( )

1

1 1 p
p

B r u

B B

u u d C g d
B B



 
  

 
−    

 
   

    Where  
( )

1
B

B

u u d
B




=    is the average on B , ug  is an upper gradient of u .  

Proof 

For any ball B X , By Jensen and Fubini [14]: 

( ) ( )
( ) ( ) ( ) ( )

2

1 1
B

B B B

u u d u x u y d x d y
B B

  
  

−  − 
 

For any pair ,x y B B  ,the chain condition provides a path   1 2, , ..., Nx z z z y= = , with  i iz B  . 

By triangle inequality: 

( ) ( ) ( ) ( )
1

1

1

N

i i

i

u x u y u z u z
−

+

=

−  −  

By upper gradient definition: 

( ) ( ) ( ) ( )
1

1 1, sup
i i

i i i i u
w B B

u z u z d z z g w
+

+ +


−   

Since ( )1 1, , 2i i i iB B d z z r+ +  , then  ( ) ( ) ( )
1

1 2 sup
i i

i i u
w B B

u z u z r g w
+

+


−   . 

Total over chain of length : 

( ) ( ) ( )
1

1

2 sup
i

N

u
w Bi

u x u y r g w
−

=

−    

From ( ),
c

d x y
N C

r
   , thus ( ) ( ) ( ) ( )2 , sup

i

c u
w B

u x u y C d x y g w


−  . 

But ( ), 2d x y r   (since both in B  ), so 

( ) ( ) ( )4 sup
i

c u
w B

u x u y C r g w


−   

Substitute into double integral: 

( ) ( ) ( ) ( ) ( ) ( )
2

4 supc u
w B

B B

u x u y d x d y C r B g w


  




− 
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Where B  is expansion covering all the chains. 

Divide by ( )
2

B  : 
( )

( ) ( ) ( ) ( ) ( )
2

1
4 supc u

w B
B B

u x u y d x d y C r g w
B 

 
 



− 
 

Now use Hölder to estimate the sup [14]: 

( )
( )

1

1
sup

p
p

u u
w B

B

g w g d
B




 

 
   
 


 

So 

( ) ( )

1

1 1
4

p
p

B c u

B B

u u d C r g d
B B



 
  

 
−    

 
   

Near the fractal boundary, the measure ( )B    includes Hausdorff dimension , and the  quasidoubling's  

error term ( )r   may appear in constants. The presence of the boundary may require expanding B  to 

include all balls in chains, which may "see" the complexity of the boundary, increasing the value of 

( )B  .Thus, the constant C and expansion  depend on fractal dimension s of ( )x ,constant dC , 

function ( )r  in quasi-doubling and chain constant cC  ; geometric properties of the space . 

Now : there exist constants , 0C    depending on above parameters, such that for every ball B X  

and every Lipschitz function u , 

( ) ( )

1

1 1 p
p

B r u

B B

u u d C g d
B B



 
  

 
−    

 
     . 

 

4.   Applications to PDEs  

4.1   Solving the Poisson Equation in a Metric Space with Fractal Boundaries  

4.1.1Example 

    Let X be the unit disk in the plane, defined by  2 2 1x y+  . 

However, instead of a circular boundary, the boundary is replaced by a fractal curve known as the Koch 

curve [7] , which is a continuous but nowhere smooth curve with fractal dimension ( )1, 2s  . 

We consider a two-dimensional Lebesgue measure inside the disk and on the boundary (the fractal 

Koch) we use the Hausdorff measure of dimension s : 

2 2

inside the desk XH  = +  

The problem is to solve the Poisson equation: 
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u f− =  in   X  ,  0Xu  =  

where  f  is a given function (e.g., 1f = ) . 

We replace the classical Sobolev space with the Newtonian space ( )1,2 ,N X    which takes into account 

the mixed measure and fractal boundary, and defines derivatives via upper gradients [3,15]. 

Despite the complexity of the boundary, if the measure    satisfies the quasi-doubling condition in X , 

then we can prove a Poincaré inequality of the form: 

2
2

u

X X

u d C g d    

for all functions u that vanish on the fractal boundary, where ug  is the upper gradient  

(replacing the classical derivative). In [10] the analysis of Laplacians on fractals further supports the 

mathematical framework needed for handling such problems in fractal domains. 

4.1.2 Solution and Analysis  

    We formulate the problem in a weak form as in the classical case.Using the Poincaré inequality and 

energy methods, we establish existence and uniqueness of a weak solution u in ( )1,2 ,N X  . 

Even if the solution cannot be expressed explicitly as in the classical smooth case, its existence and 

regularity are guaranteed by the energy estimates provided through the Poincaré inequality, regardless of 

how complex or fractal the boundary is. 

4.2  Energy Estimates 

    In variational problems, energy functionals often take the form: 

( )
pp s

X X

E u u d u dH


=  +   

where sH  denotes the Hausdorff measure of the fractal boundary.  

    The Poincaré inequality guarantees the coercivity and lower semicontinuity of such functionals , 

which are crucial for the existence and approximation of minimizers. This is especially relevant in 

models of physical systems, such as heat flow or wave propagation in materials with highly irregular 

(fractal) interfaces [2]. 

5.  Conclusion and Future Work 

    We have established the validity of weak Poincaré inequalities for metric measure spaces with 

fractal boundaries and quasi-doubling measures . 

This opens the way for further investigations into quantitative bounds for PDE solutions, trace theory, 

and extension results in spaces of increasing geometric and measure-theoretic complexity. 
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